Multicomponent Polyanions. 29. The Structure of Trisodium Bis(tetramethylammonium) Monohydrogenhexamolybdodiarsenate Heptahydrate

By Britt Hedman
Department of Inorganic Chemistry, University of Umeå, S-901 87 Umeå, Sweden

(Received 18 February 1980; accepted 2 June 1980)

Abstract

$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{Na}_{3} \mathrm{HMO}_{6} \mathrm{As}_{2} \mathrm{O}_{26} .7 \mathrm{H}_{2} \mathrm{O}$ is triclinic, $P \overline{1}$, with $a=8.200$ (1), $b=22.779$ (3), $c=12.002$ (2) \AA, $\alpha=118.82$ (1), $\beta=91.58$ (1), $\gamma=76.58(1)^{\circ}, Z=2$. The final $R=0.037$ for 4959 independent reflexions. The structure contains $\mathrm{HMo}_{6} \mathrm{As}_{2} \mathrm{O}_{26}^{5-}$ anions consisting of six MoO_{6} octahedra joined in a hexagonal ring by sharing edges, and with one AsO_{4} tetrahedron attached on each side of the ring. The anion is protonated and the H atom is attached to one of the unshared arsenate O atoms. The mean Mo-Mo distances are 3.27, 5.65 and $6.52 \AA$. The Mo-O distances are distributed in three different groups, depending on coordination, with mean values of $1.71,1.91$ and $2.34 \AA$. The As-O distances vary between 1.649 and $1.725 \AA$. The anions are joined in a three-dimensional framework mainly by $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Na}-\mathrm{O}$ links, with all Na^{+}ions directly coordinated to the anions. The structure is a superstructure with an approximate repetition of the anions and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations after $b / 2$. The repetition is broken by the Na^{+}ions and water molecules, basically as a result of the anion protonation.

Introduction

Aqueous equilibria $p \mathrm{H}^{+}+q \mathrm{MoO}_{4}^{2-}+r \mathrm{HAsO}_{4}^{2-}=$ $\left(\mathrm{H}^{+}\right)_{p}\left(\mathrm{MoO}_{4}^{2-}\right)_{q}\left(\mathrm{HAsO}_{4}^{2-}\right)_{r}$ have been studied by potentiometric and spectrophotometric methods (298 K, 3.0 M NaClO 4 medium; Pettersson, 1975; Lyhamn \& Pettersson, 1980). These investigations established the formation of two series of complexes which, in (p, q, r) notation, consist of $(8,5,2)$ and ($p, 6,2$) with $p=10,11,12$ (colourless complexes), and ($p, 9,1$) with $p=14,15,16,17$ (yellow complexes). From a large-angle X -ray scattering (LAXS) investigation (Johansson, Pettersson \& Ingri, 1978) the ($p, 9,1$) complexes with $p=14,15$ and 16 were shown to have the same basic structure as the $\mathrm{Mo}_{9} \mathrm{AsO}_{31}\left(\mathrm{OH}_{2}\right)_{3}^{3-}$ anion [corresponding to (17,9,1)] found in $\mathrm{Na}_{3} \mathrm{Mo}_{9} \mathrm{AsO}_{31}\left(\mathrm{OH}_{2}\right)_{3} .12-13 \mathrm{H}_{2} \mathrm{O}$ (Johansson, 1980). Raman data also showed these anions to be
present in solution and, furthermore, indicated the presence of a dimerized $(17,9,1)$ complex, $\mathrm{Mo}_{18} \mathrm{As}_{2} \mathrm{O}_{62}^{6-}$ (Lyhamn \& Pettersson, 1979). The Na^{+}salt of this dimer is isomorphous with the P analogue $\mathrm{Na}_{6} \mathrm{Mo}_{18} \mathrm{P}_{2} \mathrm{O}_{62} .24 \mathrm{H}_{2} \mathrm{O}$ (Strandberg, 1975).

For the ($p, 6,2$) complexes, Pettersson (1975) suggested the anion structure found in the present work, i.e. a ring of six edge-sharing MoO_{6} octahedra with one AsO_{4} tetrahedron on each side [formula $\mathrm{H}_{n} \mathrm{Mo}_{6} \mathrm{As}_{2} \mathrm{O}_{26}^{(6-n)-}, n=0-2$. This structure was supported in an ${ }^{17} \mathrm{O}$ NMR investigation (Filowitz \& Klemperer, 1976) and is isostructural with the anions $\mathrm{Mo}_{8} \mathrm{O}_{26}^{4-}$ (Fuchs \& Hartl, 1976) and $\mathrm{Mo}_{6} \mathrm{~V}_{2} \mathrm{O}_{26}^{6-}$ (Björnberg, 1979). The same basic anion structure has also been found for the anion $\left(\mathrm{CH}_{3} \mathrm{As}\right)_{2} \mathrm{Mo}_{6} \mathrm{O}_{24}^{4-}$, in which the terminal O atom in each arsenate tetrahedron has been replaced by a CH_{3} group (Kwak, Rajković, Stalick, Pope \& Quicksall, 1976). However, the $\mathrm{Mo}_{6} \mathrm{As}_{2} \mathrm{O}_{26}$ structure does not explain the LAXS data of a $(12,6,2)$ solution (Johansson et al., 1978). Among several models tested, the best fit seems to be obtained for a structure based on the $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{As}\right)_{2} \mathrm{Mo}_{6} \mathrm{O}_{25} \mathrm{H}_{2}\right]^{4-}$ anion, with $\mathrm{C}_{6} \mathrm{H}_{5}$ replaced by O atoms (Johansson, Pettersson \& Ingri, 1980). This anion contains six MoO_{6} octahedra, which form a ring with one face-, two corner- and three edge-sharings and with two $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{AsO}_{3}$ tetrahedra capping, sharing the O atoms with Mo (Matsumoto, 1978). In the molybdoarsenate system the $\mathrm{H}_{4} \mathrm{Mo}_{12} \mathrm{As}_{4} \mathrm{O}_{50}^{4-}$ anion has also been found (Nishikawa \& Sasaki, 1975). In the present work the structure for the $(11,6,2)$ complex is reported.

Experimental

Crystal preparation and data

An aqueous solution of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Na}_{2} \mathrm{HAsO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and HClO_{4} in molar ratios $\mathrm{H}^{+}: \mathrm{MoO}_{4}^{2-}: \mathrm{HAsO}_{4}^{2-}=11: 6: 2$ and with $\left[\mathrm{Mo}_{\text {tot }}=\right.$ 0.5 M was prepared for the crystallization. To this solution was added $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]$ I in amounts equivalent to a molar compensation by tetramethylammonium ions of half the negative charge of the $(11,6,2)$ complex.

Table 1. Crystal data for $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{2} \mathrm{Na}_{3} \mathrm{HMO}_{6} \mathrm{As}_{2} \mathrm{O}_{26}$.$7 \mathrm{H}_{2} \mathrm{O}$
Triclinic, space group $P \overline{1}$

$$
\begin{array}{lll}
a=8.200(1) \AA^{*} & V & =1901.2(5) \AA^{3} \\
b=22.779(3) & Z & =2 \\
c=12.002(2) & M_{r} & =1485.85 \\
\alpha=118.82(1)^{\circ} & D_{x} & =2.60 \mathrm{Mg} \mathrm{~m}^{-3} \\
\beta=91.58(1) & D_{m} & =2.59 \\
\gamma=76.58(1) & \mu\left(\text { Mo } K_{\alpha}\right) & =3.85 \mathrm{~mm}^{-1}
\end{array}
$$

* Throughout this paper, numbers in parentheses represent the e.s.d.'s and refer to the last decimal place.

Colourless acicular crystals were formed within a week by evaporation at room temperature. The crystals slowly decompose in air, and were sealed in a glass capillary during the X-ray investigation. The density was determined by flotation in bromoform/carbon tetrachloride. Weissenberg photographs indicated triclinic symmetry, and the space group $P \overline{1}$ was established in the structure determination. Cell parameters were obtained by least-squares refinement from 25 reflexions ($20^{\circ}<2 \theta<48^{\circ}$) automatically centred on a Syntex $R 3$ four-circle diffractometer. Crystal data are listed in Table 1.

Data collection and reduction

Intensities were collected at 298 K on the diffractometer with Mo $K \alpha$ radiation monochromatized by a graphite crystal $(\lambda=0.71069 \AA$). They were collected by the $\theta-2 \theta$ scan method (2θ scan rate between 3 and $8^{\circ} \mathrm{min}^{-1}, 2 \theta$ scan width 2.6° plus the $\alpha_{1}-\alpha_{2}$ dispersion, background measured on each side of the reflexion for a total time equal to the scan time). Three standard reflexions were measured at an interval of 50 reflexions. 8684 unique reflexions with $2 \theta \leqq 57^{\circ}$ were measured; of these, 4959 with $I>3 \sigma(I)$ were considered observed, where $\sigma(I)=\left(\mathrm{TI}+\mathrm{BI} / \mathrm{TR}^{2}\right)^{1 / 2} \times$ scan rate ($\mathrm{TI}=$ total scan intensity, $\mathrm{BI}=$ total background intensity, $\mathrm{TR}=$ time ratio scan/background). The size of the crystal was approximately $0.13 \times$ $0.15 \times 0.20 \mathrm{~mm}$. An empirical absorption correction was applied, based on the measurement of 11 reflexions evenly distributed in $(\sin \theta) / \lambda$, each reflexion being rotated around its diffraction vector in steps of 10°. The relative transmission factor varied from 1.0 to $0.669\left[\mu(\mathrm{Mo} K \alpha)=3.85 \mathrm{~mm}^{-1}\right]$. The intensities and the $\sigma(I)$ were also corrected for Lorentz and polarization effects.

Structure determination and refinement

From a Patterson synthesis based on subcell data ($b=11.389 \AA$, odd k removed and even halved) the Mo and As atoms were located, and routine heavy-

Table 2. Fractional atomic coordinates ($\times 10^{4}$; for Mo and $\mathrm{As} \times 10^{5}$)

For the O atoms $\mathrm{O}(i), \mathrm{O}(i j)$ and $\mathrm{OAs}(i j)$ the index indicates that the atom is bonded to Mo atoms i or i and j, and As indicates that it is also bonded to an As atom.

	x	y	z
Mo (1)	44635 (11)	25875 (4)	23889 (9)
$\mathrm{Mo}(2)$	65050 (11)	11491 (4)	23013 (9)
$\mathrm{Mo}(3)$	69464 (11)	11046 (4)	49704 (9)
$\mathrm{Mo}(4)$	54077 (12)	24770 (4)	77169 (9)
Mo(5)	34401 (11)	39070 (4)	77744 (9)
Mo (6)	30102 (11)	39799 (4)	51492 (9)
As(1)	68109 (12)	27622 (4)	51330 (9)
As(2)	31248 (12)	22765 (4)	49197 (10)
$\mathrm{O}(1)$	5915 (10)	2474 (4)	1266 (7)
$\mathrm{O}^{\prime}(1)$	2559 (9)	2790 (4)	1892 (8)
$\mathrm{O}(12)$	4573 (9)	1645 (3)	1892 (7)
$\mathrm{O}(16)$	4601 (8)	3495 (3)	3674 (7)
OAs(12)	6419 (8)	2309 (3)	3574 (6)
$\mathrm{OAs}(16)$	2877 (8)	2781 (3)	4212 (7)
$\mathrm{O}(2)$	8001 (9)	1078 (3)	1242 (6)
$\mathrm{O}^{\prime}(2)$	6097 (10)	346 (3)	1580 (7)
$\mathrm{O}(23)$	7945 (8)	1081 (3)	3521 (7)
$\mathrm{OAs}(23)$	4691 (8)	1541 (3)	4131 (7)
$\mathrm{O}(3)$	8726 (9)	992 (3)	5694 (7)
$\mathrm{O}^{\prime}(3)$	6472 (10)	322 (4)	4260 (8)
O(34)	5338 (9)	1559 (3)	6454 (7)
OAs(34)	6913 (8)	2269 (3)	5857 (6)
$\mathrm{O}(4)$	7262 (10)	2278 (4)	8311 (8)
$\mathrm{O}^{\prime}(4)$	3851 (10)	2614 (4)	8787 (7)
$\mathrm{O}(45)$	5372 (8)	3402 (3)	8134 (7)
OAs(45)	3391 (9)	2737 (3)	6504 (7)
O (5)	3849 (9)	4703 (3)	8503 (7)
$\mathrm{O}^{\prime}(5)$	1909 (9)	3966 (4)	8797 (7)
O(56)	1989 (8)	3989 (3)	6561 (7)
$\mathrm{OAs}(56)$	5191 (8)	3494 (3)	5917 (6)
O (6)	3483 (9)	4766 (3)	5844 (7)
$\mathrm{O}^{\prime}(6)$	1203 (9)	4081 (4)	4432 (8)
OAs 1	8625 (8)	2968 (3)	5201 (7)
OAs2	1306 (9)	2003 (3)	4814 (7)
$\mathrm{Na}(1)$	9996 (5)	3090 (2)	3526 (4)
$\mathrm{Na}(2)$	8211 (6)	2834 (2)	641 (4)
$\mathrm{Na}(3)$	40 (6)	1918 (2)	7083 (5)
Aq (1)	7582 (9)	3738 (3)	3062 (8)
Aq (2)	9600 (8)	2139 (4)	1666 (8)
$\mathrm{Aq}(3)$	7870 (11)	3767 (4)	205 (8)
Aq (4)	913 (10)	2261 (4)	9324 (8)
Aq (5)	9647 (9)	3079 (4)	7692 (8)
Aq (6)	2509 (10)	1124 (4)	6661 (9)
Aq (7)	2448 (10)	1143 (4)	-10 (8)
$\mathrm{N}(1)$	2254 (11)	4803 (4)	2188 (9)
C(1)	3912 (16)	4270 (6)	1629 (14)
C(2)	863 (15)	4440 (6)	1905 (13)
C(3)	1995 (15)	5278 (6)	1621 (12)
C(4)	2285 (19)	5254 (7)	3595 (13)
N (2)	7866 (11)	176 (4)	7809 (8)
C(5)	6264 (16)	724 (6)	8354 (13)
C(6)	9344 (16)	501 (6)	8088 (12)
C(7)	8088 (18)	-293 (6)	8400 (14)
C(8)	7845 (16)	-262 (6)	6382 (11)

atom methods yielded the positions of the anion O and non-hydrogen atoms of the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cation. After expanding to the full structure ($b=22.779 \AA$, all atoms repeated at $y+\frac{1}{2}$, all data) the remaining non-hydrogen
atoms were located. Full-matrix least-squares refinement with isotropic temperature factors gave $R=$ $0 \cdot 08$. With anisotropic thermal parameters the refinement converged at $R=\sum| | F_{o}\left|-\left|F_{c}\right| V \sum\right| F_{o} \mid=0.037$ and $R_{w}=\left[\sum w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w_{l}\left|F_{o}\right|^{2}\right]^{1 / 2}=0.041 . \mathrm{A}$ weighting scheme, $w=1 / \sigma^{2}\left(F_{o}\right)$, was applied in which $\sigma^{2}\left(F_{o}\right)$ was modified to $\sigma^{2}\left(F_{o}\right)=\sigma^{2}\left(F_{o}\right)+\left(0.012 F_{o}\right)^{2}$. In the final cycle the parameter shifts were $<0 \cdot 1 \sigma$. A final difference synthesis showed no anomalies. Mo^{3+}, As, O^{-}(anion atoms), $\mathrm{Na}^{+}, \mathrm{O}, \mathrm{N}$ and C scattering factors were used and account was taken of the real and imaginary parts of anomalous dispersion (International Tables for X-ray Crystallography, 1974).

The computer programs were those supplied with the Syntex R3 crystallographic system, and the computations were made on a Data General Nova 3 computer. Final atomic positional and thermal parameters are given in Table 2.*

Description and discussion of the structure

The structure consists of $\mathrm{HMo}_{6} \mathrm{As}_{2} \mathrm{O}_{26}^{--}$anions joined in a three-dimensional framework. In the [100] and [001] directions they are connected by $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Na}-\mathrm{O}$ links as well as by hydrogen bonds, while $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations link in the [010] direction (Fig. 1).

The $\mathrm{HMo}_{6} \mathrm{As}_{2} \mathrm{O}_{26}^{5-}$ anion

The anion consists of six MoO_{6} octahedra joined in a flat hexagonal ring by sharing edges. On each side the ring is capped by one AsO_{4} tetrahedron, which has three O atoms in common with the Mo atoms (Fig. 2). An H atom is attached to one of the unshared arsenate atoms OAs2. As can be seen in Table 3, the anion is regular [approximate $\overline{3} m \quad\left(D_{3 d}\right)$ symmetry, disregarding the H atom] with mean $\mathrm{Mo}-\mathrm{Mo}$ distances of $3.27,5.65$ and $6.52 \AA$. The MoO_{6} octahedra are distorted with the characteristic $2+2+2$ distribution of Mo-O distances, with mean values of 1.71 (terminal), 1.91 (shared by two Mo atoms) and $2.34 \AA$ (shared by two Mo and one As atom). The distances compare well with those found in similar heteropolyanions, e.g. $\mathrm{HMo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}^{5-}$ (Hedman \& Strandberg, 1979) or $\left(\mathrm{CH}_{3} \mathrm{As}\right)_{2} \mathrm{Mo}_{6} \mathrm{O}_{24}^{4-}$ (Kwak et al., 1976). The AsO_{4} tetrahedra are slightly distorted (Table 3) as a joint result of protonation and of having two Mo atoms coordinated to three of the O atoms. For the latter the

[^0]

Fig. 1. The structure projected on the $y z$ plane. The subcell is indicated by a dotted line. Dashed lines indicate bonds to anions on $x+1$ compared with those drawn, and dashed-dotted lines indicate long $\mathrm{Na}-\mathrm{O}$ distances. The superscripts indicate the symmetry operations: (') $x+1, y, z$; (") $2-x, 1-y, 1-z$; ("') $1-x, 1-y, 1-z$; (iv) $1-x, 1-y,-z$; (v) $1-x,-y, 1-z$.

Fig. 2. A stereoscopic view of the $\mathrm{HMO}_{6} \mathrm{As}_{2} \mathrm{O}_{26}^{5-}$ anion. The thermal ellipsoids are scaled to include 50% probability (ORTEP II; Johnson, 1976).
mean As-O distance is $1.71 \AA$, which is longer than in most orthoarsenates, e.g. $1.669-1.670 \AA$ in $\mathrm{Na}_{3} \mathrm{AsO}_{4} .(\mathrm{NaOH})_{0-0.25} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (Tillmanns \& Baur, 1971). For the unshared O atoms the difference in distances $[\mathrm{As}(1)-\mathrm{OAs} 1 \quad 1.649(7), \quad \mathrm{As}(2)-\mathrm{OAs} 2$ 1.725 (7) \AA] clearly indicates the protonation of

OAs2. This is comparable to the differences found in, for example, $\mathrm{Na}_{2} \mathrm{HAsO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, 1.662$ to $1.728 \AA$ (Baur \& Khan, 1970) or $\mathrm{CaHAsO}_{4} .2 \mathrm{H}_{2} \mathrm{O}, 1.672$ to $1.729 \AA$ (Ferraris, 1969). Furthermore, $\mathrm{As}(2)$ seems to
be displaced nearer to the $\mathrm{Mo}_{6} \mathrm{O}_{24}$ ring than is $\mathrm{As}(1)$, as indicated by the increased $\mathrm{OAs}(i j)-\mathrm{As}(2)-\mathrm{OAs}(i j)$ and decreased OAs2-As(2)-OAs $(i j)$ angles as compared with the $\mathrm{As}(1)$ values. The mean $\mathrm{As}(2)-\mathrm{Mo}$

Table 3. Distances $\left(\AA\right.$) and angles $\left({ }^{\circ}\right)$ within the $\mathrm{HMo}_{6} \mathrm{As}_{2} \mathrm{O}_{26}^{5-}$ anion

$\mathrm{Mo}(1)-\mathrm{Mo}(2)$	$3 \cdot 268$ (1)	$\mathrm{Mo}(2)-\mathrm{Mo}(4)$	5.684 (1)	As(1)-Mo(1)	3.668 (1)	As(2)-Mo(1)	3.681 (1)
$\mathrm{Mo}(2)-\mathrm{Mo}$ (3)	$3 \cdot 261$ (1)	Mo(2)-Mo(6)	5.674 (1)	Mo(2)	3.668 (1)	$\mathrm{Mo}(2)$	3.681 (1)
$\mathrm{Mo}(3)-\mathrm{Mo}(4)$	$3 \cdot 270$ (1)	$\mathrm{Mo}(3)-\mathrm{Mo}(5)$	5.625 (1)	Mo(3)	3.661 (2)	$\mathrm{Mo}(3)$	3.635 (2)
$\mathrm{Mo}(4)-\mathrm{Mo}(5)$	$3 \cdot 251$ (2)	$\mathrm{Mo}(4)-\mathrm{Mo}(6)$	5.639 (2)	Mo(4)	3.722 (1)	$\mathrm{Mo}(4)$	3.682 (1)
$\mathrm{Mo}(5)-\mathrm{Mo}$ (6)	$3 \cdot 240$ (1)	$\mathrm{Mo}(1)-\mathrm{Mo}(4)$	6.538 (1)	Mo(5)	3.696 (1)	Mo(5)	3.705 (1)
$\mathrm{Mo}(6)-\mathrm{Mo}(1)$	3.285 (1)	$\mathrm{Mo}(2)-\mathrm{Mo}$ (5)	6.537 (1)	Mo(6)	$3 \cdot 653$ (1)	Mo(6)	3.734 (2)
$\mathrm{Mo}(1)-\mathrm{Mo}(3)$	5.631 (2)	Mo(3)-Mo(6)	6.499 (2)			$\mathrm{As}(1)-\mathrm{As}(2)$	3.415 (1)

$\begin{aligned} & \mathrm{Mo}(6)-\mathrm{Mo}(1)-\mathrm{Mo}(2) \\ & \mathrm{Mo}(1)-\mathrm{Mo}(2)-\mathrm{Mo}(3) \end{aligned}$	119.96 (4)	O(1)	$\begin{aligned} & \mathrm{Mo}(2)-\mathrm{Mo}(3)-\mathrm{Mo}(4) \\ & \mathrm{Mo}(3)-\mathrm{Mo}(4)-\mathrm{Mo}(5) \end{aligned}$$O^{\prime}(1)$	$\begin{gathered} 120 \cdot 99(4) \\ 119.23(4) \\ O(12) \end{gathered}$	$\begin{aligned} & \mathrm{Mo}(4)-\mathrm{Mo}(5)-\mathrm{Mo}(6) \\ & \mathrm{Mo}(5)-\mathrm{Mo}(6)-\mathrm{Mo}(1) \end{aligned}$		$\begin{aligned} & 120.63(4) \\ & 119.97(4) \end{aligned}$
	119.17 (4)						
					O(16)	OAs(12)	OAs(16)
$\mathrm{Mo}(1)$		1.706 (8)	1.699 (8)	1.910 (8)	1.921 (7)	$2 \cdot 296$ (7)	2.373 (7)
O(1)			2.707 (11)	2.778 (12)	2.730 (10)	2.976 (11)	
OAs(16)			2.799 (11)	2.825 (10)	2.681 (10)	2.839 (10)	
$\mathrm{O}(12)$			2.744 (12)			2.570 (10)	
$\mathrm{O}(16)$			2.774 (10)			2.714 (11)	
$\mathrm{O}(1)-\mathrm{Mo}(1)-$			$105 \cdot 3$ (4)	$100 \cdot 2$ (4)	97.5 (4)	95.0 (3)	
$\mathrm{OAs}(16)-\mathrm{Mo}(1)-$			85.1 (3)	81.8 (3)	76.5 (3)	74.9 (3)	
$\mathrm{O}(12)-\mathrm{Mo}(1)-$			98.8 (4)			74.7 (3)	
$\mathrm{O}(16)-\mathrm{Mo}(1)-$			99.9 (4)			79.6 (3)	
		O(2)	$\mathrm{O}^{\prime}(2)$	$\mathrm{O}(12)$	O(23)	OAs(12)	OAs(23)
$\mathrm{Mo}(2)$		1.715 (7)	1.717 (8)	1.921 (8)	1.897 (7)	2.312 (7)	$2 \cdot 346$ (7)
$\mathrm{O}(2)$			2.697 (11)	2.765 (11)	2.733 (10)	$2 \cdot 885$ (10)	
OAs(23)			2.969 (10)	2.806 (10)	$2 \cdot 612$ (10)	2.800 (10)	
$\mathrm{O}(12)$			2.776 (11)			2.570 (10)	
$\mathrm{O}(23)$			2.783 (10)			2.757 (11)	
$\mathrm{O}(2)-\mathrm{Mo}(2)-$			103.6 (4)	98.8 (3)	98.2 (3)	$90 \cdot 3$ (3)	
$\mathrm{OAs}(23)-\mathrm{Mo}(2)-$			92.6 (3)	81.6 (3)	$75 \cdot 2$ (3)	73.9 (3)	
$\mathrm{O}(12)-\mathrm{Mo}(2)-$			99.3 (4)			$74 \cdot 1$ (3)	
$\mathrm{O}(23)-\mathrm{Mo}(2)-$			$100 \cdot 6$ (4)			81.2 (3)	
		O(3)	$\mathrm{O}^{\prime}(3)$	O(23)	$\mathrm{O}(34)$	OAs(23)	OAs(34)
Mo(3)		1.709 (8)	1.702 (9)	1.915 (7)	1.923 (7)	$2 \cdot 332$ (7)	$2 \cdot 326$ (8)
O(3)			2.704 (11)	2.759 (11)	2.749 (11)		2.858 (12)
OAs(23)			2.898 (12)	$2 \cdot 612$ (10)	$2 \cdot 807$ (10)		2.871 (10)
$\mathrm{O}(23)$			2.783 (12)				2.766 (10)
$\mathrm{O}(34)$			2.740 (11)				2.632 (11)
$\mathrm{O}(3)-\mathrm{Mo}(3)-$			104.9 (4)	99.0 (4)	98.2 (4)		88.8 (3)
$\mathrm{OAs}(23)-\mathrm{Mo}(3)-$			$90 \cdot 5$ (3)	75.2 (3)	81.9 (3)		$76 \cdot 1$ (3)
$\mathrm{O}(23)-\mathrm{Mo}(3)-$			100.4 (4)				80.8 (3)
$\mathrm{O}(34)-\mathrm{Mo}(3)-$			98.0 (4)				75.9 (3)
		O(4)	$\mathrm{O}^{\prime}(4)$	$\mathrm{O}(34)$	$\mathrm{O}(45)$	OAs(34)	OAs(45)
Mo(4)		1.720 (9)	1.702 (8)	1.915 (8)	1.909 (8)	2.365 (7)	$2 \cdot 334$ (7)
O (4)			2.722 (12)	2.761 (11)	2.769 (12)	2.943 (11)	
OAs(45)			2.892 (11)	2.758 (12)	2.621(10)	2.824 (10)	
$\mathrm{O}(34)$			2.729 (11)			2.632 (11)	
$\mathrm{O}(45)$			2.800 (12)			2.758 (10)	
$\mathrm{O}(4)-\mathrm{Mo}(4)-$			105.4 (4)	98.7 (4)	99.3 (4)	90.8 (3)	
OAs(45)-Mo(4)-			$90 \cdot 1$ (4)	$80 \cdot 3$ (3)	75.6 (3)	73.9 (3)	
$\mathrm{O}(34)-\mathrm{Mo}(4)-$			97.8 (4)			$75 \cdot 1$ (3)	
$\mathrm{O}(45)-\mathrm{Mo}(4)-$			101.5 (4)			79.6 (3)	
		$\mathrm{O}(5)$	$\mathrm{O}^{\prime}(5)$	O(45)	O(56)	OAs(45)	OAs(56)
Mo(5)		1.704 (8)	1.718 (8)	1.901 (7)	1.907 (7)	$2 \cdot 358$ (8)	2.333 (7)
O (5)			2.705 (12)	2.755 (11)	2.775 (10)		2.995 (10)
OAs(45)			2.841 (11)	2.621 (10)	2.786 (11)		2.839 (10)
$\mathrm{O}(45)$			2.792 (11)				2.765 (10)
$\mathrm{O}(56)$			2.713 (11)				2.581 (10)
$\mathrm{O}(5)-\mathrm{Mo}(5)-$			104.5 (4)	99.5 (4)	$100 \cdot 3$ (4)		94.5 (3)
OAs(45)-Mo(5)-			86.9 (3)	$75 \cdot 1$ (3)	$80 \cdot 8$ (3)		74.5 (3)
$\mathrm{O}(45)-\mathrm{Mo}(5)-$			100.9 (4)				80.9 (3)
$\mathrm{O}(56)-\mathrm{Mo}(5)-$			96.8 (4)				74.2 (3)

Table 3 (cont.)

		$\mathrm{O}(6)$		$\mathrm{O}^{\prime}(6)$	O(16)	O(56)	OAs		OAs ${ }^{(56)}$
Mo(6)		1.708 (8)		1.718 (8)	1.905 (7)	1.899 (7)	2.429 (8)		2.291 (7)
$\mathrm{O}(6)$				2.726 (11)	2.763 (11)	2.811 (11)			2.953 (11)
OAs(16)				2.845 (12)	$2 \cdot 681$ (10)	2.785 (10)			2.904 (10)
$\mathrm{O}(16)$				2.759 (10)					2.723 (10)
$\mathrm{O}(56)$				2.710 (11)					2.581 (10)
$\mathrm{O}(6)-\mathrm{Mo}(6)-$				105.5 (4)	99.6 (4)	102.3 (4)			94.1 (3)
OAs(16)-Mo(6)-				84.8 (3)	$75 \cdot 3$ (3)	79.0 (3)			75.9 (3)
$\mathrm{O}(16)-\mathrm{Mo}(6)-$				99.1 (4)					80.4 (3)
$\mathrm{O}(56)-\mathrm{Mo}(6)-$				96.9 (4)					75.4 (3)
	OAs 1	OAs(12)	OAs(34)	OAs(56)		OAs2	OAs(16)	OAs(23)	OAs(45)
As(1)	1.649 (7)	1.711 (7)	1.708 (8)	1.720 (7)	As(2)	1.725 (7)	1.706 (8)	1.700 (7)	1.710 (7)
OAs 1		2.753 (10)	2.728 (10)	2.771 (10)	OAs2		2.770 (11)	2.724 (10)	2.775 (10)
OAs(12)			2.799 (10)	2.790 (10)	OAs(16)			$2 \cdot 827$ (11)	2.818 (10)
OAs(34)				2.787 (11)	OAs(23)				2.830 (10)
OAs 1-As(1)-		$110 \cdot 0$ (4)	108.6 (4)	110.7 (4)	OAs2-As(2)-		107.7 (4)	105.4 (4)	107.8 (4)
$\mathrm{OAs}(12)-\mathrm{As}(1)-$			109.9 (3)	108.9 (3)	$\mathrm{OAs}(16)-\mathrm{As}(2)-$			112.2 (4)	111.2 (4)
OAs(34)-As(1)-				108.8 (3)	OAs(23)-As(2)-				112.2 (4)

and $\mathrm{As}(1)-\mathrm{Mo}$ distances are 3.69 and $3.68 \AA$, respectively. Another indication of the protonation is the short OAs2-OAs1' hydrogen-bond distance of 2.591 (11) \AA. This hydrogen bond links the anions into continuous chains extended in the [100] direction.

The sodium-oxygen arrangement, the water hydrogen bonds and tetramethylammonium cations

The three crystallographically different Na^{+}ions are all coordinated to anion O atoms (Fig. 1). Na (1) links two anions in the [100] direction by binding to $\mathrm{O}^{\prime}(1)$, $\mathrm{O}^{\prime}(6)$ and $\mathrm{OAs}(16)$ in one anion and OAs1 in the other. Two water O atoms complete a distorted octahedral arrangement around $\mathrm{Na}(1)$. A similar arrangement, but with four water and two anion O atoms $\left\{\mathrm{O}(1)\right.$ and $\mathrm{O}^{\prime}(4)$, binding along $\left.[001]\right\}$, is found around $\mathrm{Na}(2)$, while for $\mathrm{Na}(3)$ three water and two anion O atoms $[\mathrm{O}(3)$ and $\mathrm{O}(4)]$ are found at a short distance with two additional O atoms, $\mathrm{OAs}(34)$ and OAs 2^{\prime}, further away. The coordination is capped octahedral. The short $\mathrm{Na}-\mathrm{O}$ distances vary between 2.259 and $2.645 \AA$, with the two long distances slightly above $3 \AA$ (Table 4).

The $\mathrm{Na}-\mathrm{O}$ polyhedra are internally joined by common edges to trimers (Fig. 1), with schematic composition $\mathrm{Na}_{3} \mathrm{O}_{9}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$. Together with numerous hydrogen bonds (distances given in Table 4) they constitute the main binding forces in the [100] and [001] directions. With one exception, the H atoms all seem to be directed towards anion O atoms or to the only water molecule $[\mathrm{Aq}(7)]$ not coordinated to Na^{+}. All unshared and seven shared anion O atoms are, in this way, parts of $\mathrm{Na}-\mathrm{O}$ or hydrogen bonds.

The $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations have the usual tetrahedral geometry with $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles ranging from 106 to 112° and an average $\mathrm{N}-\mathrm{C}$ distance of $1.51 \AA$ (Table 5).

Table 4. Sodium-oxygen and hydrogen-bond distances (\AA)

The superscripts refer to the following symmetry operations:

(i) $x+1, y, z$		(v) $1-x, 1-y$,	
(ii) $x+1, y, z-1$		(vi) $x, y, 1+z$	
(iii) $x, y, z-1$		(vii) $1-x,-y, 1$	
(iv) $x-1, y, z$		(viii) $1-x,-y$,	
$\mathrm{Na}(1)-\mathrm{Aq}(2)$	2.325 (9)	OAs2-OAsi ${ }^{\text {lv }}$	2.591 (11)
Aq(1)	2.404 (10)	O(16)	$2 \cdot 818$ (11)
$\mathrm{O}^{\prime}(6)^{1}$	2.421 (9)	Aq(1)	
OAs1	2.488 (8)	$\mathrm{O}(6)^{v}$	2.910 (12)
OAs(16) ${ }^{1}$	2.537 (8)	$\mathrm{Aq}(7)^{1}$	2.837 (12)
$\mathrm{O}^{\prime}(1)^{\text {i }}$	2.645 (9)	$\mathrm{Aq}_{\mathrm{O}(2)}$	2.841 (12)
$\mathrm{Na}(2)-\mathrm{Aq}(3)$	2.380 (11)	Aq(5) ${ }^{\text {III }}$	2.881 (12)
$\mathrm{Aq}(4)^{11}$	2.444 (10)	Aq(3)	
$\mathrm{O}(1)$	2.483 (10)	O(5) ${ }^{\text {v }}$	3.027 (13)
$\mathrm{Aq}(2)$	2.506 (10)	$\mathrm{O}^{\prime}(4)$	2.889 (12)
Aq (1)	2.602 (9)	$\mathrm{Aq}(4)-\mathrm{Aq}(7)^{v i}$	3.023 (14)
$\mathrm{O}(4)^{111}$	2.636 (9)	$\mathrm{O}^{\prime}(1)^{\text {vi }}$	3.117 (11)
		$\mathrm{O}^{\prime}(5)^{1}$	2.881 (11)
$\mathrm{Na}(3)-\mathrm{Aq}$ (6)	2.259 (11)	$\mathrm{Aq}(5)$	
$\mathrm{Aq}(5)^{\mathrm{iv}}$	2.321 (11)	OAs1	2.990 (11)
$\mathrm{O}(3)^{\text {iv }}$	2.440 (9)	O(34)	2.787 (12)
$\mathrm{O}(4)^{\text {iv }}$	2.488 (10)	Aq(6)	
Aq (4)	2.547 (10)	$\mathrm{O}^{\prime}(3)^{\text {vii }}$	2.832 (13)
OAs2	3.047 (10)	O(12)	2.783 (11)
$\mathrm{OAs}(34)^{\text {iv }}$	3.058 (9)	Aq(7)	

Table 5. Distances (\AA) and angles $\left({ }^{\circ}\right)$ in the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations

$\mathrm{N}(1)-\mathrm{C}(1)$	$1.507(17)$	$\mathrm{N}(2)-\mathrm{C}(5)$	$1.487(17)$
$\mathrm{C}(2)$	$1.499(17)$	$\mathrm{C}(6)$	$1.512(17)$
$\mathrm{C}(3)$	$1.508(17)$	$\mathrm{C}(7)$	$1.520(19)$
$\mathrm{C}(4)$	$1.499(16)$	$\mathrm{C}(8)$	$1.513(14)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$108.9(10)$	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(6)$	$10.0(10)$
$\mathrm{C}(1)-\mathrm{N}(1) \mathrm{C}(3)$	$109.8(10)$	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(7)$	$110.7(10)$
$\mathrm{C}(1)-\mathrm{N}(1) \mathrm{C}(4)$	$109.9(10)$	$\mathrm{C}(5)-\mathrm{N}(1) \mathrm{C}(8)$	$19.98(10)$
$\mathrm{C}(2)-\mathrm{N}(1) \mathrm{C}(3)$	$10.4(10)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(7)$	$108.0(10)$
$\mathrm{C}(2)-\mathrm{N}(1) \mathrm{C}(4)$	$111.8(10)$	$\mathrm{C}(6)-\mathrm{N}(1) \mathrm{C}(8)$	$10.1(10)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(4)$	$106.0(10)$	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$	$108.3(10)$

The superstructure

The anion possesses an approximate centre of inversion which is situated near $\frac{1}{2}, \frac{1}{4}, \frac{1}{2}$. Together with the crystallographic centre at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ this results in an apparent translation of the anion by $b / 2$ (Fig. 1). Furthermore, the two independent $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations are also situated as if repeated by $b / 2$. However, the $\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}$ arrangement is not repeated in this way, even if some individual atoms may be considered to be. This may be explained by the protonation of the anions, with the H atom pointing alternately in the $-x$ and $+x$ directions for anions at y and $y+\frac{1}{2}$, respectively. The conditions for Na^{+}coordination to the arsenate O atoms are thus different, with the given result. The number of reflexions with $I>3 \sigma(I)[I>2 \sigma(I)]$ was 3558 [3777] for k even and 1401 [1898] for k odd. The intensity was $<10 \sigma(I)$ for 75% of the k odd reflexions and the maximum value was $55 \sigma(I)$.

I thank Professor Nils Ingri for all the facilities placed at my disposal, Dr Lage Pettersson for stimulating discussions, and Dr Michael Sharp for revising the English text. This work forms part of a programme financially supported by the Swedish Natural Science Research Council.

References

Baur, W. H. \& Khan, A. A. (1970). Acta Cryst. B26, 1584-1596.

Buörnberg, A. (1979). Acta Cryst. B35, 1995-1999.
Ferraris, G. (1969). Acta Cryst. B25, 1544-1550.
Filowitz, M. \& Klemperer, W. G. (1976). J. Chem. Soc. Chem. Commun. pp. 233-234.
Fuchs, J. \& Hartl, H. (1976). Angew. Chem. 88, 385-386.
Hedman, B. \& Strandberg, R. (1979). Acta Cryst. B35, 278-284.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-98, 149. Birmingham: Kynoch Press.
Johansson, G. (1980). To be published.
Johansson, G., Pettersson, L. \& Ingri, N. (1978). Acta Chem. Scand. Ser. A, 32, 681-688.
Johansson, G., Pettersson, L. \& Ingri, N. (1980). To be published.
Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kwak, W., Rajković, L. M., Stalick, J. K., Pope, M. T. \& Quicksall, C. O. (1976). Inorg. Chem. 15, 2778-2783.
Lyhamn, L. \& Pettersson, L. (1979). Chem. Scr. 12, 142-152.
Lyhamn, L. \& Pettersson, L. (1980). Chem. Scr. To be published.
Matsumoto, K. Y. (1978). Bull. Chem. Soc. Jpn, 51, 492-498.
Nishikawa, T. \& Sasaki, Y. (1975). Chem. Lett. pp. 1185-1186.
Pettersson, L. (1975). Acta Chem. Scand. Ser. A, 29, 677-689.
Strandberg, R. (1975). Acta Chem. Scand. Ser. A, 29, 350-358.
Tillmanns, E. \& Baur, W. H. (1971). Acta Cryst. B27, 2124-2132.

Acta Cryst. (1980). B36, 2246-2250

X-ray and NMR Studies of the Interaction Between Pd ${ }^{11}$ and \boldsymbol{S}-Methyl-L-cysteine Methyl Ester

By M. Kubiak, A. Allain*, B. Jeżowska-Trzebiatowska, T. Glowiak and H. Kozıowski
Institute of Chemistry, University of Wroctaw, 14 Joliot-Curie, 50-383 Wroclaw, Poland

(Received 28 February 1980; accepted 11 June 1980)

Abstract

Both X-ray and NMR results indicated that S-methyl-L-cysteine methyl ester (SmcOMe) is coordinated to $\mathrm{Pd}^{\text {II }}$ through the S and N donors. X-ray studies were performed on crystals of the 1:1 ligand-metal complex. Crystals of dichloro(S-methyl-L-cysteine methyl ester)palladium(II) monohydrate are tetragonal, space

^[* Present address: Institut de Chimie, Université L. Pasteur, 4 rue B. Pascal, 67000 Strasbourg, France.]

group $P 4_{12}^{2,2,}$ with $a=b=8.309$ (3), $c=$ 33.860 (9) $\AA, Z=8$. The structure was refined to $R=$ 0.062 for 823 counter reflections. The coordination around Pd is slightly distorted square planar and involves the S and N atoms of the amino acid molecule and two Cl atoms. The five-membered chelate ring has an envelope-like conformation. The absolute configuration of the ligand was assigned as ($3 R, \mathrm{~S} R$) with reference to the known R configuration of L-cysteine.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35316 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

